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A method of intermediate problems, which provides convergent improvable lower bound estimates for eigenval-
ues of linear half-bound Hermitian operators in Hilbert space, is applied to investigation of the energy spectrum
and eigenstates of a two-electron two-dimensional quantum dot (QD) formed by a parabolic confining potential
in the presence of external magnetic field. It is shown that this method, being supplemented with conventional
Rayleigh–Ritz variational method and stochastic variational method, provides an efficient tool for precise cal-
culation of the energy spectrum of various models of quantum dots and helps to verify results obtained so
far by various analytical and numerical methods being of current usage in numerous theoretical studies of
quantum dots.
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1. INTRODUCTION
Among nano-sized and low-dimensional systems of various
kinds, quantum dots (QD’s) are thought to be potentially fit for
numerous present and future applications and currently accounted
as promising building blocks for novel electronic, spintronic and
optoelectronic devices. The properties of QD’s are shown to be
greatly influenced by electron–electron interaction and correla-
tion effects.1–3 Precise estimation of the energy spectrum and
eigenstates of a quantum dot is a typical goal of nearly any theo-
retical study because their properties crucially stipulates relevant
physical characteristics of the quantum dot as standing alone as
being a part of electric circuits or interacting with environment
through its various interfaces.

Thus, it is very important to have reliable methods to solve
many-electron QD eigenstate and eigenvalue problem and inves-
tigate QD’s internal electron structure.4 As a consequence, nearly
all the mathematical methods, developed within the domain of
quantum mechanics so far, have already been used on various
particular necessities, though on a varying scale, in the theory
of quantum dots. Among them one can mention “exact” numer-
ical diagonalization,1�2 quantum Monte Carlo numerical simula-
tion techniques5 and Hartree–Fock calculations.1�6–8 The series
expansion method9�10 as well as the newly developed semiclas-
sical perturbation theory in D-dimensions11 have been employed
in the QD studies too.

Despite all the differencies as in approach, power and
complexity, all the most frequently applicable methods of

approximate calculation of eigenvalues and eigenstates of realis-
tic physical models of low-dimensional quantum systems, quan-
tum dots among them, share one unfavorable feature: they allow
either direct calculation of the magnitudes in question without
proper error estimates or, at best, provides one with nonincreas-
ing or even convergent upper bounds for the eigenvalues as, for
example, the widely applicable Rayleigh–Ritz method does, but,
again, without error estimates.
To control the error of the approximations provided by the

upper bounds for some quantity it would be enough to derive
corresponding lower bounds which are highly desirable to be
convergent too. Therefore, development of regular methods to
construct such bounds bears a lot of theoretical and practical sig-
nificance but represents much more challenging task than deriva-
tion of the upper bounds. As to various models of quantum
dots, the most suitable, to our knowledge, ground to achieve
this goal would be the method of intermediate problems ascend-
ing in its basic idea to the maximum-minimum characterization
of eigenvalues of half-bounded Hermitian operators in Hilbert
space introduced by Weyl12 and elaborated later by numerous
contributors13�14 with regard to problems of classical and quan-
tum mechanics. Being supplemented with regular Rayleigh–Ritz
or newly developed stochastic variational method,15 the method
of intermediate problems may serve as a powerful tool for
investigation of the energy spectrum of few-body quantum sys-
tems with prescribed or controllable precision and provides an
opportunity to verify results obtained by other numerical and
analytical methods.16 A stochastic variational method can also
be developed on its basis17 allowing, in principle, construction
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of improvable lower bounds for energy eigenvalues of realis-
tic models of quantum dots confining relatively large number of
excess electrons. Numerical studies of the latter systems proved
to be especially difficult and time-consuming if undertaken by
means of direct numerical solution of the underlying Schrödinger
equation leading to highly multidimensional grids, or by reg-
ular variational approaches resulting in prohibitively large sets
of basis states. It is worth noticing, that whenever a particu-
lar algorithm based on the method of intermediate problems is
applied in order to get lower bound estimates for energy eigen-
values, the corresponding eigenstates would result immediately
as a concomitant outcome of the calculations. Error estimates
for the so derived eigenstates can also be obtained but, what
appears to be more practical, such error estimates can also be
derived instead for the approximate eigenstates calculated within
the frame of the Rayleigh–Ritz regular or stochastic variational
method15 provided that the lower bound estimates for the corre-
sponding energy eigenvalues are known.18–20 Equally, under the
same premises, expectation values (matrix elements) of physi-
cally relevant operator variables (dipole or quadruple moments
of a quantum dot, for example) calculated with respect to these
Rayleigh–Ritz approximate eigenstates can be given their respec-
tive error bound estimates too. In addition, mathematically rigor-
ous methods of low-dimensional system investigation can provide
an opportunity for verification of the methods of analytical and
numerical analysis being of current usage.

2. TWO-DIMENSIONAL TWO-ELECTRON QD
IN EXTERNAL MAGNETIC FIELD

Two-electron quantum dots confined in a parabolic potential rep-
resent an example of one of the simplest QD system revealing
the influence of the electron–electron correlations on the QD
properties. For most practical purposes the parabolic confinement
potential, seen by electrons in a QD, characterizes the low-lying
part of the dot energy spectrum correctly. Hence, in what follows,
we consider a two-electron dot in two dimensions described by
the Hamiltonian

H = ∑
i=1�2

1
2m∗

e
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where m∗ is the conduction-band effective mass of each of the
two electrons moving in a medium with dielectric constant �, e is
the absolute value of the electron charge, g∗ is the effective g fac-
tor and �0 is the frequency of a harmonic confining potential. For
two-dimensional (2D) quantum dots ri = �ri�, where ri = �xi� yi�.
The vector potential Â�r�, �B= rotA� is introduced in the sym-
metric gauge, Â�r� = B/2�−y�x�0�. The Hamiltonian (1) can
also be written down as
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where �2
0 =�2

0+�2
c/4, �c = eB/m∗

ec is the cyclotron frequency,
and Lz is the z-component of the angular momentum operator.

Further on, due to the parabolic form of the confining potential,
the Hamiltonian of Eq. (2) can be presented as a sum of center-
of-mass and relative motion term

H =HR+Hr +Hs (3)
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where R = �r1 + r2�/2, �R = �1 + �2, r = r1 − r2 and �r =
��1 − �2�/2. Due to this separation, the two-particle wave
functions can be written in polar coordinates in the form
	�R�
�r�exp�−im�� with azimuthal quantum number m =
0�±1�±2� � � � of the relative motion. Therefore, because of the
Pauli exclusion principle the total quantum state must be spin
singlet �s = 0� and triplet �s = 1� for even and odd m, respec-
tively. Because of the separation of variables in the Hamiltonian
(3), its eigenvalues E are a sum E=Ecm+Erel+Es of the center-
of-mass energy Ecm, the relative motion energy Erel and the
spin-field interaction energy Es . The eigenvalues of the center-
of-mass motion Hamiltonian (4) are essentially the ones of a
two-dimensional harmonic oscillator in external magnetic field

Ecm�N �M�= ��0�2N +�M �+1�−��c

M

2
(7)

with radial �N = 0�1�2� � � �� and azimuthal �M = 0�±1�±2� � � ��
quantum numbers. In what follows, we will omit energy contri-
butions belonging to the center-of-mass motion energy Ecm and
spin-field interaction energy Es because of their trivial and man-
ifestly additive role.

To obtain the eigenvalues of the relative motion
Hamiltonian (5) the time-independent Schrödinger equation

Hr
�r�exp�−im��� = En�m�
�r�exp�−im��� (8)

must be solved. At this point, it is convenient to introduce new
dimensionless variables for energies and distances by measuring
them in natural units of ��0 and l = √

�/m∗
e�0 respectively,

i.e., E′
n�m�= En�m�/��0 and r ′ = r/l. Further on, we will omit

the prime sign “′” at r ′ for convenience. Hence, Eq. (8) can be
reduced to the equation for the radial function 
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where the effective Bohr radius aB = ��2/m∗
e ���/e

2� and
the dimensionless parameter � = l/aB describes the relative
magnitude of the Coulombic energy and confinement energy
scales. In its turn, Eq. (8) allows interpretation in terms of
the time-independent Schrödinger equation with some effective
Hamiltonian Heff
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and
H ′ = �

r
(12)

with E′′
n �m�= E′

n�m�+ �m/2���c/�0�.
The eigenvalue problem

H0
0
n�r�= E0�n�m�
0

n�r� (13)

can be solved explicitly for each m with the corresponding eigen-
states
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where L�
n�x� are generalized Laguerre polynomials
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and eigenvalues

E0�n�m� = 2�2n+�m�+1� (16)

where n= 0�1�2� � � � is the radial quantum number.

3. BASICS OF THE METHOD OF
INTERMEDIATE PROBLEMS

To make this proceeding self-contained, some technicalities of
the method of intermediate problems are outlined here in brief.
The starting point of the method is the standard time-independent
Schrödinger equation

H
 = E
 (17)

where H is some Hermitian operator with respect to the inner
product ���
�= ∫

�∗
 d� in Hilbert space. It is assumed that all
continuous energy levels of H are higher than the lowest discrete
energy levels of one’s interest. Let us assume, too, that these
discrete eigenvalues of H can be ordered in a nondecreasing
sequence,

E1 ≤ E2 ≤ � � � (18)

in which each degenerate eigenvalue, if any happens to be
among others, appears the number of times of its multiplicity.
Eigenstates 
i, corresponding to the eigenvalues Ei, satisfy the
equation

H
i = Ei
i (19)

and are assumed to be orthonormalized, so that

�
i�
j �= �ij (20)

where �ij is Kronecker’s delta. It is further assumed that the
Hamiltonian H can be decomposed as

H =H0+H ′ (21)

where H0 has known eigenvalues and eigenstates and H ′ is an
arbitrary Hermitian operator which is to be positive definite in
the sense that

�
�H ′
�=
∫

∗H ′
 d� > 0 �
 �= 0� (22)

for every 
 in the domain of H . Hereafter, it is assumed that the
lowest part of the discrete spectrum of H0 is below its continuous
spectrum and that the corresponding discrete eigenvalues can be
ordered in the same manner (18) as those ones belonging to the
total Hamiltonian H

E0
1 ≤ E0

2 ≤ � � � (23)

with the degenerate eigenvalues appearing the number of times of
their multiplicity. The corresponding orthonormalized eigenstates

0
i satisfy the equation

H0
0
i = E0

i 

0
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j �= �ij (24)

Because H0 ≤H in the sense of inequality

�
�H0
�≤ �
�H
� (25)

for every 
 in the domain of H , it follows from the Weyl com-
parison theorem12 that

E0
i ≤ Ei �i = 1�2� � � �� (26)

Therefore, the eigenvalues of H0 already provide rough lower
bound to the eigenvalues of H . The Hamiltonian H0 is called the
base Hamiltonian as usual. It is worth noticing that the decompo-
sition (21) is not unique and can be tailored to meet the require-
ments of a particular problem in question.
The basic idea of the method of intermediate problems is

to approximate the original Hamiltonian H from below by a
non-decreasing sequence of the so-called truncated intermediate
Hamiltonians Hk . These Hamiltonians are to be constructed to
satisfy the inequalities

Hk ≤Hk+1 ≤H �k = 1�2� � � �� (27)

Therefore, the Hamiltonian Hk increases if the index k is
increased and thus must give improvable lower bounds for
the lowest eigenvalues of the original Hamiltonian H . It was
shown21�22 that the truncated Hamiltonians Hk can be represented
in a general form

Hk =H0+H ′Pk �k= 1�2� � � �� (28)

The operator Pk defines a projection of an arbitrary vector � in
the domain of H onto the subspace formed by a sequence of
vectors p1�p2� � � � �pk:

Pk�=
k∑

i=1

�ipi (29)

where constants �i must satisfy the equations

pj�P
k��= pj���=

k∑
i=1

�ipj�pi� �j = 1�2� � � � � k� (30)

Here an auxiliary inner product with respect to the metric oper-
ator H ′ was introduced as


���= �
�H ′��=
∫

∗H ′�d� (31)

for every pair of vectors 
, � for which H ′
 and H ′� are
defined. Vectors p1�p2� � � � �pk are to be chosen linearly inde-
pendent in the vector space with inner product (31). These vec-
tors are to be normalizable but their explicit normalization is not
required.
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Projections Pk become larger with the increase of the num-
ber k of the elements pi in the sense that the following inequality
holds

0 ≤ ��Pk��≤ ��Pk+1��≤ ����� �k = 1�2� � � �� (32)

which in original vector space reads as

0 ≤ ���H ′Pk��≤ ���H ′Pk+1��≤ ���H ′�� �k= 1�2� � � ��
(33)

From Eqs. (29) and (30) it follows that

H ′Pk�=
k∑

i� j=1

�H ′pi���bijH
′pj (34)

where bij are the elements of the matrix inverse to the matrix
with terms pj�pi�. As a consequence of Eq. (33)

H ′Pk ≤H ′Pk+1 ≤H ′ �k = 1�2� � � �� (35)

and the intermediate truncated Hamiltonians Hk defined as

Hk =H0 +H ′Pk �k = 1�2� � � �� (36)

satisfy inequalities
Hk ≤Hk+1 ≤H (37)

by construction if inequalities (35) are taken into account. There-
fore, the lowest ordered eigenvalues Ek

i of Hk must satisfy
inequalities

Ek
i ≤ Ek+1

i ≤ Ei �i� l� k = 1�2� � � �� (38)

thus providing improvable lower bounds for the original eigen-
values Ei of the Hamiltonian H .

It is not a trivial problem to find the eigenstates and eigenval-
ues of the Hamiltonian Hk in the case of arbitrary set of vec-
tors �pi�. However, for a proper choice of these vectors the task
can be simplified significantly. One of such choices was proposed
in Ref. [21] where each vector pi was defined by the equation

H ′pi = 
0
i � i = 1�2� � � � � k (39)

or, equivalently,

pi = �H ′�−1
0
i � i = 1�2� � � � � k (40)

which holds due to existence of the inverse operator �H ′�−1 for
positive definite operator H ′. With so chosen set of vectors �pi�
substituted into (34) the Hamiltonian Hk now acts as

H ′�=H0�+
k∑

i� j=1

�
0
i ���bij


0
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It is seen from Eq. (41) that if �
0
i ��� = 0, i = 1�2� � � � � k then

Hk
 = H0
. Therefore, each eigenstate 
0
j which was not used

in the definition (40) is an eigenstate of Hk with the original
persistent eigenvalue E0

j . It was proved in a similar way23 that the
continuous spectrum of Hk is identical with that of H0. Hence,
the remaining eigenstates of Hk can be represented in the form


 =
k∑

�=1

��

0
� (42)

and the Schrödinger time-independent equation Hk
 = E

results into the equivalent system of linear algebraic equation
with respect to �i

k∑
i=1

�i�E
0
j −E��ij +bij �= 0� 1≤ i ≤ k (43)

The eigenvalues of the intermediate Hamiltonian Hk are the roots
of the equation

��E0
i −E��ij +bij � = 0� 1≤ i� j ≤ k (44)

but they are not the k lowest eigenvalues of the Hamiltonian Hk

in general case. Therefore, these eigenvalues must be united with
those unperturbed eigenvalues E0

j whose corresponding eigen-
states were not employed in the definition (40) of the �pi� vec-
tors. Then, the whole set of the thus obtained eigenvalues �Ek

i �
of the Hamiltonian Hk must be rearranged into a nondecreasing
sequence Ek

1 ≤ Ek
2 ≤ Ek

3 ≤ � � � thus leading to the lower bound
inequalities of the kind

E0
i ≤ Ek

i ≤ Ek+t
i ≤ Ei� 1≤ i� k� t (45)

4. RESULTS
Finally, we calculated the low-lying energy spectrum E′′

n �m� for
the effective Hamiltonian model (10) for small values of the
azimuthal quantum number m = 0�m = ±1 and two strongly
different values of the parameter � = 1 and � = 0�05. Due to
conservation of the orbital momentum, in all of the cases con-
sidered the original Hamiltonian (1) as well as the effective
Hamiltonian (10) were reduced to a subspace characterized by
the particular value of the azimuthal quantum number m and the
ensuing reduced eigenvalue problem was treated by means of
the lower bound estimate formalism outlined in the Section 3.
In the course of the calculations the reduced Hamiltonian (11)
served as the base problem Hamiltonian H0 while the interaction
Hamiltonian (12) stood for the operator H ′ in the decomposition
(21). The eigenstates (14) were employed as the eigenstates of the
base problem 
0

i . Totally, 200 such eigenstates were employed
in calculations. The results are listed in the Tables I and II corre-
spondingly. Regular Rayleigh–Ritz method with the base formed

Table I. Upper E ′′
n�upp�m� and lower E ′′

n� low�m� bounds for energy eigen-
values E ′′

n �m�: � = 1�0.

State E ′′
n� low E ′′

n�upp E ′′
n� low E ′′

n�upp

number �m = 0� �m = 0� �m =±1� �m = ±1�

n = 0 3�98703 4�00047 5�19295 5�193
n = 1 7�67122 7�69481 9�06465 9�06475
n = 2 11�4768 11�5071 12�9783 12�9785
n = 3 15�3421 15�3772 16�9145 16�9147
n = 4 19�2415 19�2802 20�8645 20�8648
n = 5 23�1626 23�2040 24�8238 24�8242
n = 6 27�0984 27�1420 28�7897 28�7902
n = 7 31�0447 31�0902 32�7605 32�7611
n = 8 34�999 35�046 36�735 36�7357
n = 9 38�9592 39�0076 40�7126 40�7134
n = 10 42�9243 42�9739 44�6925 44�6934
n = 11 46�8933 46�9439 48�6745 48�6755
n = 12 50�8654 50�9169 52�6581 52�6592
n = 13 54�8402 54�8926 56�6431 56�6443
n = 14 58�8173 58�8704 60�6293 60�6306
n = 15 62�7963 62�8501 64�6166 64�618
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Table II. Upper E ′′
n�upp�m� and lower E ′′

n� low�m� bounds for energy eigen-
values E ′′

n �m�: � = 0�05.

State E ′′
n� low E ′′

n�upp E ′′
n� low E ′′

n�upp

number �m = 0� �m = 0� �m =±1� �m =±1�

n = 0 2�12069 2�12364 4�0625 4�06250
n = 1 6�0905 6�09356 8�05474 8�05475
n = 2 10�077 10�0801 12�0499 12�0499
n = 3 14�0687 14�0718 16�0464 16�0464
n = 4 18�0629 18�0661 20�0437 20�0437
n = 5 22�0586 22�0617 24�0416 24�0416
n = 6 26�0551 26�0583 28�0398 28�0398
n = 7 30�0523 30�0554 32�0383 32�0383
n = 8 34�0499 34�053 36�037 36�0370
n = 9 38�0478 38�051 40�0358 40�0359
n = 10 42�046 42�0492 44�0348 44�0348
n = 11 46�0444 46�0476 48�0339 48�0339
n = 12 50�043 50�0462 52�033 52�0331
n = 13 54�0417 54�0449 56�0323 56�0323
n = 14 58�0406 58�0438 60�0316 60�0316
n = 15 62�0395 62�0427 64�0309 64�031

by the same number of unperturbed eigenstates 
0
i was used to

obtain the upper bound estimates for the energy eigenvalues of
the Hamiltonian (10). It is seen that for both cases, i.e., � = 0�05
and � = 1, the gap between the lower and upper bounds is rel-
atively small even for low lying eigenvalues. For the case of
relatively strong interaction � = 1 the gaps between the lower
and upper bounds are larger than the gaps for the same eigenval-
ues by order in the case of weak interaction � = 0�05. Also, in
both cases, the gaps are larger for the low-lying eigenvalues than
for the eigenvalues belonging to highly excited eigenstates. It is
natural, because, as anticipated, the Coulomb repulsion interac-
tion between the electrons must affect the system ground state
as well as adjacent eigenstates to mush higher degree than the
states belonging to the upper part of the spectrum. The gaps
could be decreased if stricter lower and upper bounds would be
obtained by boldly increasing the number k of the base functions

0
i involved in the calculation though this approach being time-

consuming. The reason for this is that the unperturbed eigenstates

0
i are no longer adequate for construction of the subspace �pi�

and the usage of stochastic variational approach15�17 in order to
get lower and upper bounds seems to be preferable instead. The
same situation actually persists for weak interaction � = 0�05 but
the discrepancy between the upper and lower bounds is much less

0 5 10 15
0.6

0.8

1

1.2

1.4

1.6

1.8

2

n

E
nco

rr
(m

)

Fig. 1. Correlation energies Ecorr
n �m�; � = 1; circles �: m = 0; crosses

×: m = ±1.

0 5 10 15
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

n

E
nco

rr
(m

)

Fig. 2. Correlation energies Ecorr
n �m�; � = 0�05; circles �: m = 0; crosses

×: m =±1.

pronounced in this case and much smaller sets of functions 
0
i are

required to reach the same degree of the upper and lower bound
proximity. Coincidence between the lower and upper bounds is
very good for �m� = 1 for both values of � thus indicating that
the electrons being in these eigenstates must be staying far apart
from each other. Correlation energies due to Coulomb interaction
for the electron relative motion defined as

Ecorr
n �m�= E′′

n�upp�m�+E′′
n� low�m�

2
−E0�n�m� (46)

were calculated too and are presented in Figures 1 and 2.

5. SUMMARY
Applicability of the method of intermediate problems to investi-
gation of the energy spectrum of two-dimensional two-electron
quantum dots formed by a parabolic confining potential in
the presence of constant uniform external magnetic field was
discussed. It was shown that the method is able to provide
improvable energy spectrum lower bound estimates for weak
and relatively strong electron–electron interaction strength with
prescribed or controllable precision at reasonable expense of
computational time. Being supplemented with upper bound esti-
mates computed by means of conventional regular or stochas-
tic Rayleigh–Ritz variational method, this approach allows to
find the energy spectrum with any desired precision and thus
may help verify the results obtained so far by various approxi-
mate numerical and analytical approaches to the energy spectrum
evaluation.
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